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On the flow in a channel induction furnace 

By A. J. MESTEL 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge 

(Received 31 January 1984) 

The channel induction furnace is an electrically efficient device for the heating and 
stirring of liquid metals. I n  this paper an axisymmetric model for the channel flow 
is proposed, in which the fluid is confined to the inside of a torus. An exact solution 
for the magnetic field is found in terms of toroidal harmonic functions. Finite- 
difference methods are used to calculate the primary, cross-channel motions under 
the assumptions of a small skin depth, a constant eddy viscosity and no thermal 
dependence. Non-axisymrnet,ric perturbations to the channel shape are considered 
and the perturbed field calculated. The secondary circulation along the channel is 
discussed. 

1. Introduction 
The use of alternating magnetic fields to heat and stir liquid metals is fairly 

widespread in the metallurgical industry. These devices fall broadly into two 
categories known as ' coreless ' and ' channel ' induction furnaces respectively. The 
coreless furnace is conceptually the simpler, consisting of a container full of liquid 
metal surrounded by a coil carrying alternating current. The induced electric currents 
drive strong circulatory flows in the melt, as illustrated in figure 1 (a ) .  I n  a channel 
furnace the electrical efficiency of the system is increased by topologically linking the 
liquid metal with a ferromagnetic core. This is achieved by the attachment to the 
bottom of the liquid-metal bath of both ends of a channel, through which the fluid 
passes. The core is then linked with the channel, and energized by means of an 
induction coil. The induced currents flow along the channel and connect up inside 
the main body of the metal, as illustrated in figure 1 ( b ) .  The system may be thought 
of as an electrical transformer with a closed loop of liquid metal playing the part of 
the secondary coil. 

The advantages of the channel furnace over the coreless furnace are twofold. First, 
the channelling of the magnetic field by the highly permeable core reduces the leakage 
flux and the corresponding losses of electrical energy in surrounding conductors. 
Secondly, the thermal insulation around the main body of the fluid may be much 
thicker, since the magnetic field does not need to penetrate it. Heat losses are 
therefore significantly lower. These savings must be weighed against the relatively 
frequent need to service the channel section of the furnace because of erosion or build- 
up of metallic oxide. The rest of the furnace is eroded much more slowly, however. 
Thus, provided that the channel section is constructed as a separate, renewable part, 
the furnace as a whole may enjoy a considerable lifetime. 

The main disadvantage of the channel furnace relates to the character of the fluid 
flow it drives. The Lorentz forces do not vary greatly along the channel, and thus 
the primary flow occurs in a channel cross-section. For the successful functioning of 
the device, however, it  is essential for heat to be convected from the channel region, 
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where i t  is generated, to  the main body of the fluid in the bath. A secondary flow 
along the channel is thus required, which will entail circulation in the bath region. 
The relative weakness of this secondary motion renders the channel furnace less 
suitable for any process in which thorough mixing is required (e.g. in the production 
of alloys). The secondary flow can be quite complex, consisting of a superposition of 
a unidirectional drift and a system of irregular rolls spread along the channel 
(Schluckebier 1973). 

I n  this paper our objective is to  provide a quantitative model of the primary fluid 
motion across the channel, with the eventual aim of treating the secondary motions 
as perturbations on the primary flow. In  92 we formulate the mathematical model, 
and solve for the magnetic field in $3. In  $4 we discuss the primary flow, which we 
then calculate in 445 and 6. In $7 we consider the effect of non-axisymmetric 
perturbations, and conclude in 98. 
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(c) 

FIGURE 1. (a )  The coreless induction furnace. ( b )  The channel 
induction furnace. (c) The axisymmetric model. 

2. The mathematical model 
The full equations for the magnetic field, fluid motions and heat transfer are, of 

course, difficult to solve, especially in a general geometry. An additional complication 
derives from the turbulence of the flow, which needs to be modelled. In this study 
we use the simple model whereby a constant ‘eddy viscosity’ v is introduced to 
replace the kinematic molecular viscosity. We shall also neglect any effects of thermal 
variation, assuming that the rapid motions and high thermal conductivity ensure 
approximate uniformity of temperature in a channel cross-section. This assumption 
is certainly valid when calculating the primary cross-channel motion. It is less clear, 
though probably still true, that  buoyancy-driven motions are small compared with 
those driven by the Lorentz force over the entire furnace. 

The degree of penetration of the magnetic field into the metal is measured by the 
skin depth 6’ defined by 

(2.1) 

where Q is the field frequency, ,uo the magnetic permeability and u the electrical 
conductivity. For aluminium at 50 Hz this is about 3 cm, which we assume is small 
compared with the width of the channel. It is not absolutely necessary to make this 
assumption, but the extra work otherwise involved would be discommensurate with 
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the increased accuracy thereby attained. Should s’ be so large that the field 
significantly penetrates the bath, however, then a situation may occur different to 
that considered here, in which the secondary motions are as great as the primary. 
This may happen if a secondary flow path develops which excludes a large region of 
vorticity generation (Alden, Burke & Biringer 1970). This phenomenon has been 
observed in model furnaces at mains frequency, and corresponds to  a very low 
operational frequency for a real furnace, with a correspondingly low heat input. Under 
normal working conditions the skin depth is small, though not negligible. 

The magnetic Reynolds number R,, which measures the importance of advection 
of field lines by the fluid, is defined by 

where U, and d are a typical velocity scale and lengthscale respectively. As usual in 
liquid-metal MHD, we have R, 4 1, especially in the high-frequency case, when the 
effective magnetic Reynolds number is two orders of s’ ld smaller. This ensures that 
the magnetic field may be calculated as if the metal were in fact solid. The Lorentz 
force then follows by direct calculation, and will, in general, have both a steady part, 
and one oscillating with twice the driving frequency. Inertia prevents the fluid 
responding to variations in the driving force of such high frequency, and thus the 
motion we seek is that  steady motion arising from the time-averaged part of the 
Lorentz force. 

A full, three-dimensional model of the channel furnace would be difficult to  
construct, and expensive to solve in terms of computing time. Some aspects of the 
furnace can, however, be reproduced by means of an axisymmetric model, and the 
non-axisymmetric processes may then be regarded as perturbations on the underlying 
structure. Along the channel, the magnetic field does not vary very much, because 
i t  depends mainly on distance from the excitation coil, which is more or less constant 
along the side of the channel nearest the coil. The bottom of the bath may be regarded 
as a change in the cross-section of the channel, which we treat as small. The other 
variations from axisymmetry - the top of the bath, and the return path of the iron 
core - only affect the field in the regions where it is weaker, on the far side of the 
channel from the coil. 

We shall consider a furnace whose channel has a circular cross-section, as the sharp 
corners associated with a rectangular channel lead to  unnecessary complications. For 
similar reasons, we shall assume that the iron core has a circular shape, though we 
allow its size and position to vary relative to the channel. 

I n  order to make the model axisymmetric, we must formalize two approximations 
to the geometry. First, we ignore the presence of the bath above the channel, and 
consider the metal to be confined to the interior of a rigid torus. This assumption 
removes the dynamical effects associated with the entrance and exit regions of the 
channel. While these are important in driving the secondary flows, they do not greatly 
influence the primary fluid motion, which occurs in a cross-section of the channel. 

The second approximation concerns the return path of the iron core, which 
introduces aslight asymmetry into the set-up. The system could be made axisymmetric 
by moving the return path to  infinity, but i t  is more general instead to consider the 
core as returning symmetrically about the axis of the (now toroidal) channel. L 9’ ince 
we are assuming a circular shape for the iron core, we may regard the entire system 
as lying inside a toroidal hole in a ferromagnetic core. The excitation coil and the 
channel circle round inside this hole. The case where the return path is a t  infinity 
may be considered as a limit of this system as the dimensions of the tori corresponding 
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to the channel and the core are varied. The axisymmetric model is illustrated in 
figure 1 ( c ) .  

The advantage of the chosen geometry is that  i t  enables an exact mathematical 
solution for the magnetic field to be found. The surfaces of the channel and the core 
may be made into coordinate surfaces of a coordinate system in which Laplace's 
equation permits separable solutions. These toroidal coordinates are described in the 
Appendix. 

3. The magnetic field 
We represent the magnetic field by Re(Beint), where Re denotes the real part. 

Inside the metal channel, because of the smallness of the magnetic Reynolds number, 
B obeys a diffusion equation 

iQp0 CTB = V2B. 

Under the skin-depth approximation, tangential derivatives in the Laplacian are 
neglected in favour of the normal derivatives. In  terms of toroidal coordinates (0, p, 4) 
we obtain the (solenoidal) solution 

where n is the normal distance from the surface, and 

H = (coshp-cosO)~ (3.3) 

is related to the scale factors for these coordinates. The function B,(B) is determined 
by matching with the magnetic field outside the channel. It is, in fact, the tangential 
field that would o c ( w  were the metal a perfect conductor. To leading order in the 
skin depth, therefore, the correct boundary condition to be applied to the external 
field on the channel is one of zero normal field. Now the ferromagnetic core typically 
has a relative permeability of several thousand, and a finite tangential field outside 
it would give rise to a very large internal field. The boundary condition on the core 
should thus be one of zero tangential field. The application of this boundary condition 
ensures that the total induced current in the channel is equal and opposite to the 
excitation current. We choose nondimensional units such that the radius of the 
limiting torus a = 1, and let the tori defined by p = p1 and p = p2 represent the 
channel and core respectively. The channel radius d is then given by 

d = cosechpu,. (3.4) 

If we introduce a flux function $(O,p) ,  related to the magnetic field B by 
B = V A ( O , O ,  $/Rf, where R is the distance from the axis of symmetry, then 9 
satisfies 

(82-+)($) = ;D2$ = po jo  (3.5) 

in p2 < p < pl ,  where j ,  is the current distribution of the induction coil, subject to 
the boundary conditions 

(3.6) 
a$ 
- ( O , p 2 )  = Ilr(@,p1) = 0. 
% 

We solve this problem by means of an expansion in toroidal harmonics. 
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The general axisymmetric solution of Laplace’s equation Vz@ = 0 may be 
expanded as 

a, 

@ = H Z ( A ,  P,-$ (coshp) + B, Qi-l (coshp)) ein8, (3.7) 
n=o 

where P“,+ and Q$+ are Legendre functions of the first and second kinds respectively 
(Morse & $eshbach‘l953). The corresponding result for Stokes’ equation Da@ = 0 is 

where and QkPi are associated Legendre functions of the first degree. They may 
be related to complete elliptic integrals. The P-functions are regular a t  p = 0 (the 
axis of symmetry), but singular a t  p = 00 (the circle R = 1,  z = 0 ) ;  whereas the 
&-functions are singular a t  p = 0, but regular a t  p = co. 

The free-space solution ljr0 for an arbitrary current distribution jo(8’,p’) may be 
found by a Green-function method. For simplicity we assume that jo is symmetric 
about 8 = 0;  that  is, that  the channel is aligned with the centre of the coil. We 
obtain 

(3.9) 

where 

(3.11) 

and 6 ,  = 1 if n = 0, 6 ,  = 2 otherwise. The solution to the problem with the boundaries 
at p = p l ,  p2 can then be written 

i m  

(3.12) 

where F, is of the form 

F, = (A,  P;-$ (coshp) + B, Qk-; (coshp) + sinhp (3.13) 

for some constants A ,  and B, to  be determined from the boundary conditions. The 
boundary condition at p = ,uL1 is easy to apply, giving 

because of the linear independence of the functions cos n8. The boundary condition at 
p = p2, however, is more troublesome because of the multiplicative function H ( 8 ,  p )  
in (3.12). We obtain 

a, 

Z cos n8 [ (cosh pz - cos 8 )  Pk(p2) - $ sinh pz Fn(pZ)] = 0 (3.15) 
n=o 

(3.16) Or 
2 c o s h ~ 2  K ( ~ u , ) - s i n h ~ u ,  % ( ~ 2 ) - K + 1 ( ~ 2 ) -  % - I ( P ~ )  = 0. 
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Equations (3.13), (3.14) and (3.16) can be seen to imply 

(3.17) 

where the infinite square matrix M and vector L may be calculated in terms ofj,,  
,ul and ,u2. The matrix M is tridiagonal; that  is, M,, = 0 if Im--nl > 1. All that 
remains is to invert this sparse matrix. The numerical methods used to evaluate the 
field are described in $ 5 .  

A typical field pattern is shown in figure 2. The excitation coil has been modelled 
by a uniform distribution of current along the iron core from .n > 101 > $7~. The 
positions of the core and the channel are marked on the figure, their aspect ratios 
being 1.6 and 4.5 respectively. The field lines are drawn for the case of zero skin depth, 
when they are tangential to the channel. The tangential surface field B, is plotted 
in figure 3 against arclength around the channel. The heavy field concentration a t  
the inside of the channel is pronounced. 

4. The primary fluid motions 
The magnetic field inside the metal gives rise to a rotational Lorentz forcej A B, 

which drives fluid motions. The force has a steady component, and one oscillating 
with twice the applied frequency. However, the fluid inertia prevents it from 
responding to fluctuations on a sufficiently small timescale, and the dominant part 
of the motion is thus time-independent, and driven by F, the mean Lorentz force per 
unit mass (Mestel 1982). Following Sneyd (1979), we may calculate F a n d  G = curl F 
directly from (3.2), giving 

(4.1) F = L -  B2 en/g(O, 1,0) 
2Po P s’ 

and 

where p is the fluid density. A factor of + appears in (4.1) and (4.2) because B, is a 
r.m.s. value. In  some sense G is more important than F i n  that it represents that  part 
of the forcing that cannot be balanced by a pressure gradient, and so generates 
rotational motion. 

The steady velocity field u(O,,u) is poloidal and satisfies the Navier-Stokes 
equations 

(4.3) 

u * V U = - Q  - + F + v V ~ U ,  (4.4) 

V . u  = 0, 

(3 
where v is the kinematic viscosity modified by turbulence, and p is the modified fluid 
pressure. If we non-dimensionalize distances with respect to the channel width, the 
magnetic field with respect to a typical value Bo, and velocities with respect to the 
Alfven velocity scale 

v, = (sy, (4.5) 

we obtain for the corresponding vorticity equation (a = V A u)  

V A (U  A o ) + G + R L 1 V 2 a  = 0, (4.6) 
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where 
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(4.7) 

Equation (4.6) only has an azimuthal component 

1 
R +G+RL1-D2(wR) = 0. (4.8) 

Now G vanishes outside the magnetic skin layer. Further, even with the effective eddy 
viscosity, the Reynolds number will be quite large, and so we would expect that 
viscous forces will only be important near the boundary of the fluid. That being the 
case, the interior of the flow will be dominated only by inertia forces, with the result 
that o/R,  the so-called ‘potential vorticity ’, will be constant along streamlines. This 
is a well-known result for axisymmetric, high-Reynolds-number flows with closed 
streamlines. An additional result that  is of interest was proved by Batchelor (1956). 
If there exists a closed streamline that never passes through a region where 
rotational forces act, then inside it the potential vorticity must be constant. This 
property is illustrated by the numerical calculations below. 

The typical velocity scale U,, and hence the Reynolds number of the flow, is an 
unknown function of the parameters 6 and Re. If we consider the rate of energy 
dissipation, from (4.4) we obtain 

(4.9) 

The energy dissipation occurs mainly in the boundary layer on the channel wall. Since 
F i s  normal to the surface, order-of-magnitude estimates for the terms in (4.9) suggest 
the balance 

(4.10) 
6 L2 

where L is the smallest scale of variation in the boundary layer. When the skin depth 
6 is smaller than the thickness of the viscous boundary layer, we obtain 

d 

Uo6-ad6 v; = v-Lad, U: 

(4.11) 

(Moffatt 1982). When the converse occurs, as is certainly the case in an operational 
channel furnace, we get 

U, = V i a 2 -  = V, ReS2 
V 

(4.12) 

or u, = v,@& (4.13) 

The asymptotic relation (4.13) was suggested by some approximate results of 
Fautrelle (1981, 1983) for a related problem. The two limiting cases, (4.11) and (4.13), 
appear in the numerical calculations below. 

5. Numerical solutions 
Solutions have been obtained for various channel sizes, coil geometries and values 

of Re and 8. They are all qualitatively similar, and figure 4 portrays a typical flow 
corresponding to the field distribution of figure 2 when Re = 400 and S = 0.2. A 
cross-section of the channel is shown, on which two separate contour plots are drawn. 
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FIGURE 4. Flow pattern for Re = 400, 6 = 0.2: streamlines (top) 
and potential vorticity (bottom). 

The streamlines of the flow are plotted on the top half of the figure, and may be 
compared with the contours of potential vorticity o/R,  which are drawn underneath. 

Characteristic of all the flow patterns is a central jet away from the region of 
maximum magnetic pressure on the left-hand side of the diagram, which recirculates 
as the far wall is approached. A short distance away from the wall, the velocity is 
large and comparable to the speed of the jet, but i t  falls away rapidly across the 
boundary layer in order to comply with the no-slip condition. This strong shear is 
clearly visible in the potential-vorticity plots. Throughout most of the fluid the 
vorticity is negative, but in the boundary layer i t  becomes strongly positive. Other 
features of the flow vary as the parameters Re and S change. For relatively small 
Reynolds number, the centre of the circulation lies close to the left-hand side of the 
diagram where the forcing G is largest. As Re is increased, however, the inertia forces 
become more important and the flow appears to approach its pure ‘inertial ’ limit of 
constant w/R,  for which the centre is offset slightly to the right. The position of 
maximum wall stress also moves to the right as the Reynolds number is increased, 
towards the region where the central jet impinges. It should be remembered, however, 
that the turbulence model we have used is at its least applicable near the wall, and 
may not give accurate results for the wall stress. 

As the penetration depth 6 is decreased with Re held constant, the velocity 
magnitude decreases with 6. The gradients of potential vorticity outside the boundary 
layer lessen as the plateau regions begin to  be formed, until the viscous and magnetic 
boundary layers are of equal thickness. I n  the very-high-frequency limit (as 6+ 0) 
it might be possible to make some analytic progress (cf. Moffatt 1982), but this does 
not correspond to a realistic parameter range for an operational furnace. The 



0.100 I I I I I 1  I l l  I i I l l 1 1  
- 
- 
-l 

44 1 

- 
- 
- 

10 100 1000 

Re 

FIGURE 5 .  Flow strength (!Pm,,) as a function of viscosity (Re)  for S = 0.1, 0.2. 

asymptotic result (4.11) is approached more slowly than expected, as we find 
numerically that the coefficient of S3 is larger than that of 62. 

A measure of the flow velocity U, is provided by the maximum absolute value Ym,, 
attained by the stream function. This is plotted against Re on log-log axes in figure 
5 for S = 0.1 and 0.2. The gradients predicted in $4 are indicated on the diagram. 
For relatively low values of Re, the relation (4.11) is satisfied very closely. The 
asymptotic regime for which (4.13) holds has not quite been reached, the computations 
becoming quite expensive for large Reynolds number. 

6.  Numerical methods 
6.1. Evaluation of the magnetic field 

Although the solution given in (3.12) is in closed form, it is, of course, necessary to 
evaluate i t  on a computer before one obtains any intuitive idea of the behaviour of 
the field lines. We truncate the series after some large number of terms, N ,  which 
we then vary to ensure that adequate convergence has been obtained. For a given 
value o f p  we calculate the values of the associated Legendre functions P and Q by 
means of the recurrence relation 

(6.1) ( n - t )  Pi++ = 2% coshp Pk-t-(n+$) Pi-:. 

The same relation holds for the &-functions as for the P-functions. The starting values 
P', and Pi may be simply calculated in terms of complete elliptic integrals. The 

2 
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formulae used were taken from Abramowitz & Stegun (1965), although a confusing 
notational inconsistency was discovered between the relevant chapters. The P-values 
for higher n may be calculated accurately by straightforward application of (6.1). The 
same process fails, however, if used for the &-functions. This is because the P-functions 
increase rapidly with n, and thus a small error in evaluating the early &-functions, 
which is reflected in a small coefficient of a P, soon becomes magnified and completely 
swamps the real solution. Fortunately, a simple alternative method is available. If 
we choose arbitrary values for the Qs for large consecutive values of n 9 N ,  (6.1) may 
be used to iterate backwards towards n = 0. The exact value of QLt is found from 
an elliptic-integral formula, and this value is used to  normalize the entire set of 
Q-values. The new values are very accurate except near the very end, for the same 
reason that the other method fails. A small error for low values of n would give rise 
to  a massive error for large n, whereas the error for large n has been constrained by 
our initial arbitrary choice. 

As well as the P- and Q-values, which we can now find, we require their derivatives 
with respect to p. These are best found from the relation 

d 
sinhp- Pk-; = (n-f)  coshp Pk-i- (n+$) Pk-g 

dP 
and a similar one for Q. 

The first N terms in the expansion of @o we calculate by numerical integration, 
for a given choice of current distributionj,. We may then calculate the values of M 
and L. To solve the truncated equation (3.17) we use a NAG inversion routine. The 
field lines may then be plotted by contouring @, as given by (3.12). The surface field 
B, may be evaluated, and it is a useful check then to integrate it around the channel, 
which gives one the total induced current. This may then be compared with the total 
excitation current, to which i t  should be equal and opposite. 

6.2. The Navier-Stokes equations 
We aim to solve (4.6) by a finite-difference method. If we define a stream function 
Y by u = V h (O,O, Y/R), and introduce time dependence to the problem, the 
equations to be solved are 

where the second term is a Jacobian, and 

in pl < p < CO, 0 < B < n with boundary conditions 

Y(0, p l )  = Y(0, p)  = Y(n, p )  = IU(c0 ,O)  = 0 (6.5) 

and 
a av ay/  
- w e ,  PI) = - (0, p)  = - (n, p)  = 0. aP ae ae 

In order to regularize the behaviour about p = 00, we rescale the p-coordinate by 
writing 

and define a uniform grid in s and 8. Derivatives are then approximated by 
second-order difference relations, and the equations are time-stepped towards 
equilibrium using the method described by Mestel (1982). 

( l- tanhp1)s2 = 1-tanhp (6.7) 
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7. Non-axisymmetric perturbations 
Having found the primary flow, we are now in a position to  consider the effects 

of small variations of the system from axisymmetry. The return path of the iron core 
has a very weak effect on the field distribution, because i t  has relevance only in the 
region where the field is small, on the far side of the channel from the excitation 
currents. Of far greater importance is the presence of the bath above the channel. 
This we shall model by assuming the channel shape to be given by 

p = Pl -E f (e>$)> (7.1) 

where e is a suitably small parameter. A glance a t  figure 1 ( c )  reveals that  the function 
f will be localized about $ = 0 on the scale of the angle subtended at the centre of 
the torus by the junctions of channel and bath. Further, f should be much greater 
a t  0 = 0 (the top of the bath) than a t  8 = 7c (the bottom). 

The magnetic field outside the channel now takes the form 

B = B , + e V V ,  (7.2) 

where V satisfies Laplace's equation. For B to be normal to the core and tangential 
to the channel we require 

av a~ 
aP ae ~4 . 

V ( p 2 )  = 0, - ( p l )  = - H4 - (L9 (7 .3)  

If we assume for simplicity that the shape perturbation f (e ,$)  maintains the 
symmetry about 8 = 0, then V may be expanded 

m m  

V = H X X sinnOeim$ [C,, C-;(coshp) +D,, &~-L:(cosh,u)]. (7.4) 
n-0 m=o 

Application of the boundary conditions (7.3) then yields for each harmonic number 
m an equation for the coefficients C,, of the form (3.17).  These we solve numerically 
as before. We may now calculate the perturbed Lorentz force 

and, in principle, could continue to solve the linearized Navier-Stokes equations for 
each m to  find the perturbed velocity field. This somewhat lengthy calculation has 
not been done, and we confine ourselves here to some general remarks on the form 
of the secondary flow. 

The driving force of (7.5) varies significantly in the azimuthal direction only in the 
region a t  the top where the channel joins the bath. Thus, apart from a possible bulk 
motion along the channel, we would expect it to drive a circulatory cell of a 
lengthscale similar to that of the channel top. This cell will then drive a series of 
successively weakening cells down the sides of the channel, whose influence will be 
least a t  the bottom. However, heat is being generated by Joule dissipation uniformly 
along the channel, and must be convected into the bath, where i t  is lost to the 
surroundings. Thus, if the net drift along the channel is small, the weak convection 
at the bottom of the channel may very well lead to large temperature differences 
between the top and the bottom. These are undesirable, as resultant surges of buoyant 
fluid may hasten the wear on the refractory lining, quite apart from efficiency 
considerations. A healthy mean circulation is therefore a prime consideration in 
furnace design. 

15 F L M  147 
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Returning to the model, however, we notice that to  order t: there is no mean 
circulation along the channel, because the azimuthal driving force has a total moment 
M* about the axis of symmetry, given by 

I I I I I ! I I I  I I I I / I " I / I  I .  

where 

which is of second order. The net drift must therefore be found from the second-order 
equation for m = 0. Now M* will vanish if the perturbation f is an even function of 
#, that is, if the entrance and exit regions of the channel into the bath are symmetric. 
I n  practice, it clearly pays to introduce some asymmetry if a circulation is desired. 
Ideally, we would wish to calculate the size and direction of the mean circulation for 
any particular furnace design. We might attempt to model the effect of a sharp corner 
on one end of the channel and a rounded one on the other by means of the 
perturbation 

($ + 0.5) e d 2  
f =  1 + 0 2 + $ 2  

(n > $ > -0.5), f =  0 ( - 7 ~  < $ < -0.5) (7.8) 

for 7c > 0 > -TC. For this function, and the basic field of figure 2 ,  we calculate the 
surface-field perturbation Bl(O, q5). I n  figure 6, with suitable scalings, we plot f, B, 
and M as functions of $ evaluated along the inner part of the channel (0 = TC). The 
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field perturbation B, is negative because the increase in channel surface area leads 
to a decrease in the surface current. The moment M depends on the direction of the 
normal, that  is, on the gradient off. It is discontinuous a t  the sharp corner q5 = -0.5. 
For this case we find that the total moment M* < 0. It should be noted, however, 
that the sign of M* does not necessarily give us the direction of circulation. If we 
take the moment of (4.4) about the axis of symmetry, integrate about the unperturbed 
torus and ignore the viscous term, we get 

(7.9) 

We see that i t  is possible for the angular-momentum flux from the first-order flow 
to be such as to generate a mean circulation in the opposite sense to M*. Once the 
first-order flow has been evaluated, however, this circulation may be calculated. 

8. Concluding remarks 
The axisymmetric cross-sectional primary flow holds no great surprises for us, the 

fluid reacting to  the highly localized driving force in a predictable manner. Of greater 
interest and complexity are the secondary motions, into which the perturbation 
approach we have described in $ 7  may give some insight. The perturbation approxi- 
mation is valid provided that the influence of the bath region remains small, which 
is probably the case as far as the magnetic field is concerned. It is, however, 
questionable whether the nonlinear dynamical effects of the bath and its distant 
boundaries can be more than qualitatively modelled by means of a shape perturbation. 
Should the induced bath flow be approximately symmetric with respect to the 
entrance and exit regions of the channel, however, i t  seems likely that the perturbation 
method will give a good estimate for the mean circulation along the channel, as the 
effects of nonlinearity in the bath should cancel. This may be expected to occur when 
the bath walls are of regular shape and symmetrically placed, so that the only 
asymmetry occurs in the channel regions. An order of magnitude for the circulation 
rate would then be e2UO. 

Our use of the no-slip boundary condition at the top of the channel has formally 
neglected any possible effect of a free surface in the bath. However, the model will 
still apply, provided that the fluid motions a t  the top of the bath are weaker than 
those a t  the bottom. This will presumably occur if the depth of fluid in the bath is 
large compared with the channel size, as is the case in practice. 

We have assumed throughout this paper that the 'eddy viscosity' v is known. I n  
practice, of course, it must be supplied by experimental measurement. We might 
expect it to be proportional to  the velocity magnitude and the channel width, so that 

u - V, !P,,,d. 

This somewhat simplistic reasoning would predict that  observations of the velocity 
scale Uo would obey uo- v,s 
as the channel dimensions (and hence 6) are varied. A more detailed discussion of the 
effects of turbulence in this sort of flow may be found in Hunt & Maxey (1980). 

(8.2) 
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\ 

p = 0  

\ 

Appendix. Toroidal coordinates 
The toroidal coordinate system is obtained by rotating bipolar coordinates about 

their axis of symmetry. Bipolar coordinates are defined by a family of circles passing 
through two fixed points. The orthogonal set of curves are coaxial circles whose axis 
is the perpendicular bisector of the line joining the two points. Upon rotation about 
the axis, the coordinate curves become coordinate surfaces, which are respectively 
spheres passing through a given circle, and a set of tori surrounding that circle. The 
third set of orthogonal surfaces are the axial planes, corresponding to constant 
azimuthal angle $. 

We arrange the z-axis of a Cartesian system to lie along the $-axis, and define the 
fixed circle by x2+y2 = a2, for some constant a. We may now define coordinates 
-n < 0 < n and 0 < ,u < co, such that the spheres have radius a/lsin81 and centre 
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(0, 0, a cot 0), while the tori have inner radius alsinhp and outer radius a coth p. The 
aspect ratio of the torus is thus measured by coshp. With these coordinates, 

a sinhp cos$ a sinhp sin $ a sin 0 
2 =  z =  

c o s h p - c o s ~ ’  y =  coshp-cose 3 C O S ~ ~  - cos 0 ‘ 

The scale factors are given by 

U a sinhp 
h, = hp = h ,=R= 

~ ~ s ~ , u - c Q s ~ ’  coshp - cos 0 -  

Some coordinate lines are sketched in figure 7. A fuller description of toroidal 
coordinates may be found in Morse & Feshbach (1953). 

REFERENCES 

ABRAMOWITZ, M. & STEGUN, I. A. 1965 Handbook of Mathematical Functions. Dover. 
ALDEN, K. T. H., BURKE, P.  E. & BIRINGER, P. 1’. 1970 MHD pumping in channel furnaces. In  

BATCHELOR. G ,  K. 19.56 On steady laminar flow with closed streamlines at large Reynolds number. 

FAUTRELLE, Y. R .  1981 Analytical and numerical aspects of the electromagnetic stirring induced 

FAUTRELLE, Y. R.  1983 Single phase electromagnetic stirring in coreless induction furnaces. Liquid 

HUNT, J. C. R.  & MAXEY, M .  R. 1980 Turbulent flows of liquid metals. I n  MHD-Flows and 

MESTEL, A. J. 1982 Magnetic levitation of liquid metals. J .  Fluid Mech. 117, 27. 
MOFFATT, H. K. 1982 High frequency excitation of liquid metal systems. In Proc. ZUTAM Symp. 

MORSE, P. M. & FESHBACH, H. 1953 Methods of Theoretical Physics. McGraw-Hill. 
SCHLUCKEBIER, D. 1973 Inductors - particularly high power units ~ for tnelting heavy metal. In  

Proc. 5th intl  Junker Furnace Conf., Lamviersdorf, 1973, p. 188; Electrowarme Intl 31 (1973) 
B6, 270. 

SNEYD, A. D. 1979 Fluid flow induced by a rapidly alternating or rotating field. J. Fluid Xech. 
92, 35. 

Proc. IEEE Winter Power Meeting, New York, 1970. IEEE Conf. Paper. 

J .  Fluid Mech. 1, L 77. 

by alternating magnetic fields. J .  Fluid Mech. 102, 405. 

Metal Flows and Magnetohydrodynamics, p. 374. AIAA Prog. Astro. Aero. 

Turbulence IZ (ed. H. Rranover & A. Yakhot), p. 249. Israel Fniversities Press. 

on Metallurgical M H D ,  Cambridge, 1982 (in press). 


